Jun Ru Chen ’29
WUJUR (2025) | Cite this work
Abstract
Inflammatory bowel disease (IBD), a key risk factor for colorectal cancer, affects 2.39 million Americans and has no effective treatment. Current attempts include steroidal immunosuppressants, an inhibitor of immune trafficking to the gut, and therapies that aim to block gut-specific antigens. However, IBD patients often either do not respond or develop tolerance to these treatments. These limitations leave IBD patients in a cruel dilemma: either to pursue more aggressive and taxing therapies or suffer under IBD and risk further intestinal damage or the progression to colorectal cancer. A hopeful alternative to these immunosuppressive treatments is regenerative medicine. When the epithelium fails to regenerate due to inflammation, luminal bacteria infiltrate the epithelial barrier and exacerbate disease. Regenerative therapies aid regeneration to prevent progression of the disease. Recently, a novel therapy with calcitriol (an active metabolite of Vitamin D) has shown promising results for ameliorating symptoms within a murine model of IBD. However, calcitriol is known to promote the differentiation of putative LGR5+ intestinal stem cells (LGR5+ ISCs), which are essential to long term-intestinal homeostasis, leaving the broader impact on cell populations unclear. This study focused on the marker genes of reserve ISC populations (Mex3a, Tert, Hopx, Bmi1) and mature epithelial cells (Alpi, Chga, Lyz1, Muc2). After a meta-analysis of bulk RNA-seq datasets of calcitriol-treated mice, this project found significant upregulation of the reserve ISC markers Mex3a, Tert, and Hopx and observed a non-significant increase for Bmi1 after treatment. After independent validation of Bmi1 in vivo in mice, an in vitro arm tested dose-dependent effects of calcitriol in intestinal organoids and concluded that high concentrations were needed to activate Mex3a. These results on reserve stem cells suggest that calcitriol’s ameliorative effects in IBD may rely on reserve stem cells instead of LGR5+ ISCs. Future research on treatments for IBD could target reserve ISCs instead.
Main
This article is viewable by PDF download.
References
[1]. Cai, Z., Wang, S., & Li, J. (2021). Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Frontiers in Medicine, 8, 765474. https://doi.org/10.3389/fmed.2021.765474
[2]. Higashiyama, M., & Hokari, R. (2023). New and Emerging Treatments for Inflammatory Bowel Disease. Digestion, 104(1), 74–81. https://doi.org/10.1159/000527422
[3]. Lewandowska, A., Rudzki, G., Lewandowski, T., Stryjkowska-Góra, A., & Rudzki, S. (2022). Risk Factors for the Diagnosis of Colorectal Cancer. Cancer Control, 29, 10732748211056692. https://doi.org/10.1177/10732748211056692
[4]. Lewis, J. D., Parlett, L. E., Jonsson Funk, M. L., Brensinger, C., Pate, V., Wu, Q., Dawwas, G. K., Weiss, A., Constant, B. D., McCauley, M., Haynes, K., Yang, J. Y., Schaubel, D. E., Hurtado-Lorenzo, A., & Kappelman, M. D. (2023). Incidence, Prevalence, and Racial and Ethnic Distribution of Inflammatory Bowel Disease in the United States. Gastroenterology, 165(5), 1197-1205.e2. https://doi.org/10.1053/j.gastro.2023.07.003
[5]. Siegel, R. L., Wagle, N. S., Cercek, A., Smith, R. A., & Jemal, A. (2023). Colorectal Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73. https://doi.org/10.3322/caac.21772
[6]. Allegretti, J. R., Barnes, E. L., & Cameron, A. (2015). Are Patients with Inflammatory Bowel Disease on Chronic Immunosuppressive Therapy at Increased Risk of Cervical High-grade Dysplasia/Cancer? A Meta-analysis: Inflammatory Bowel Diseases, 21(5), 1089–1097. https://doi.org/10.1097/MIB.0000000000000338
[7]. Axelrad, J. E., Lichtiger, S., & Yajnik, V. (2016). Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment. World Journal of Gastroenterology, 22(20), 4794. https://doi.org/10.3748/wjg.v22.i20.4794
[8]. Axelrad, J. E., Cadwell, K. H., Colombel, J.-F., & Shah, S. C. (2021). The role of gastrointestinal pathogens in inflammatory bowel disease: A systematic review. Therapeutic Advances in Gastroenterology, 14, 17562848211004493. https://doi.org/10.1177/17562848211004493
[9]. Chassaing, B., Aitken, J. D., Malleshappa, M., & Vijay‐Kumar, M. (2014). Dextran Sulfate Sodium (DSS)‐Induced Colitis in Mice. Current Protocols in Immunology, 104(1). https://doi.org/10.1002/0471142735.im1525s104
[10]. Dunleavy, K. A., Raffals, L. E., & Camilleri, M. (2023). Intestinal Barrier Dysfunction in Inflammatory Bowel Disease: Underpinning Pathogenesis and Therapeutics. Digestive Diseases and Sciences, 68(12), 4306–4320. https://doi.org/10.1007/s10620-023-08122-w
[11]. Wen, Z., & Fiocchi, C. (2004). Inflammatory Bowel Disease: Autoimmune or Immune‐mediated Pathogenesis? Journal of Immunology Research, 11(3–4), 195–204. https://doi.org/10.1080/17402520400004201
[12]. Villablanca, E. J., Selin, K., & Hedin, C. R. H. (2022). Mechanisms of mucosal healing: Treating inflammatory bowel disease without immunosuppression? Nature Reviews Gastroenterology & Hepatology, 19(8), 493–507. https://doi.org/10.1038/s41575-022-00604-y
[13]. Chen, L., Qiu, X., Dupre, A., Pellon-Cardenas, O., Fan, X., Xu, X., Rout, P., Walton, K. D., Burclaff, J., Zhang, R., Fang, W., Ofer, R., Logerfo, A., Vemuri, K., Bandyopadhyay, S., Wang, J., Barbet, G., Wang, Y., Gao, N., … Verzi, M. P. (2023). TGFB1 induces fetal reprogramming and enhances intestinal regeneration. Cell Stem Cell, 30(11), 1520-1537.e8. https://doi.org/10.1016/j.stem.2023.09.015
[14]. Oh, S.-J., Seo, Y., & Kim, H.-S. (2024). Navigating the Landscape of Intestinal Regeneration: A Spotlight on Quiescence Regulation and Fetal Reprogramming. International Journal of Stem Cells. https://doi.org/10.15283/ijsc23176
[15]. Girish, N., Liu, C. Y., Gadeock, S., Gomez, M. L., Huang, Y., Sharifkhodaei, Z., Washington, M. K., & Polk, D. B. (2021). Persistence of Lgr5+ colonic epithelial stem cells in mouse models of inflammatory bowel disease. American Journal of Physiology-Gastrointestinal and Liver Physiology, 321(3), G308–G324. https://doi.org/10.1152/ajpgi.00248.2020
[16]. Metcalfe, C., Kljavin, N. M., Ybarra, R., & de Sauvage, F. J. (2014). Lgr5+ Stem Cells Are Indispensable for Radiation-Induced Intestinal Regeneration. Cell Stem Cell, 14(2), 149–159. https://doi.org/10.1016/j.stem.2013.11.008
[17]. Ngo, P. A., Neurath, M. F., & López-Posadas, R. (2022). Impact of Epithelial Cell Shedding on Intestinal Homeostasis. International Journal of Molecular Sciences, 23(8), 4160. https://doi.org/10.3390/ijms23084160
[18]. Gehart, H., & Clevers, H. (2019). Tales from the crypt: New insights into intestinal stem cells. Nature Reviews Gastroenterology & Hepatology, 16(1), 19–34. https://doi.org/10.1038/s41575-018-0081-y
[19]. Clevers, H. (2013). The Intestinal Crypt, A Prototype Stem Cell Compartment. Cell, 154(2), 274–284. https://doi.org/10.1016/j.cell.2013.07.004
[20]. Cheng, H., & Leblond, C. P. (1974). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine I. Columnar cell. American Journal of Anatomy, 141(4), 461–479. https://doi.org/10.1002/aja.1001410403
[21]. Palikuqi, B., Rispal, J., & Klein, O. (2022). Good Neighbors: The Niche that Fine Tunes Mammalian Intestinal Regeneration. Cold Spring Harbor Perspectives in Biology, 14(5), a040865. https://doi.org/10.1101/cshperspect.a040865
[22]. Pierce, G. B., Nakane, P. K., Martinez-Hernandez, A., & Ward, J. M. (1977). Ultrastructural Comparison of Differentiation of Stem Cells of Murine Adenocarcinomas of Colon and Breast With Their Normal Counterparts2. JNCI: Journal of the National Cancer Institute, 58(5), 1329–1345. https://doi.org/10.1093/jnci/58.5.1329
[23]. Capdevila, C., Miller, J., Cheng, L., Kornberg, A., George, J. J., Lee, H., Botella, T., Moon, C. S., Murray, J. W., Lam, S., Calderon, R. I., Malagola, E., Whelan, G., Lin, C.-S., Han, A., Wang, T. C., Sims, P. A., & Yan, K. S. (2024). Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells. Cell, 187(12), 3039-3055.e14. https://doi.org/10.1016/j.cell.2024.05.001
[24]. Barriga, F. M., Montagni, E., Mana, M., Mendez-Lago, M., Hernando-Momblona, X., Sevillano, M., Guillaumet-Adkins, A., Rodriguez-Esteban, G., Buczacki, S. J. A., Gut, M., Heyn, H., Winton, D. J., Yilmaz, O. H., Attolini, C. S.-O., Gut, I., & Batlle, E. (2017). Mex3a Marks a Slowly Dividing Subpopulation of Lgr5+ Intestinal Stem Cells. Cell Stem Cell, 20(6), 801-816.e7. https://doi.org/10.1016/j.stem.2017.02.007
[25]. Sheng, X., Lin, Z., Lv, C., Shao, C., Bi, X., Deng, M., Xu, J., Guerrero-Juarez, C. F., Li, M., Wu, X., Zhao, R., Yang, X., Li, G., Liu, X., Wang, Q., Nie, Q., Cui, W., Gao, S., Zhang, H., … Yu, Z. (2020). Cycling Stem Cells Are Radioresistant and Regenerate the Intestine. Cell Reports, 32(4), 107952. https://doi.org/10.1016/j.celrep.2020.107952
[26]. Smith, N. R., Sengupta, S. K., Conley, P., Giske, N. R., Klocke, C., Walker, B., McPhail, N., Swain, J. R., Yoo, Y. J., Anderson, A., Davies, P. S., Sanati, N., Nguyen, T. N., Torkenczy, K., Adey, A. C., Fischer, J. M., Wu, G., & Wong, M. H. (2022). Dual states of Bmi1-expressing intestinal stem cells drive epithelial development and tissue regeneration. https://doi.org/10.1101/2022.09.30.509798
[27]. Srinivasan, T., Than, E. B., Bu, P., Tung, K.-L., Chen, K.-Y., Augenlicht, L., Lipkin, S. M., & Shen, X. (2016). Notch signalling regulates asymmetric division and inter-conversion between lgr5 and bmi1 expressing intestinal stem cells. Scientific Reports, 6(1), 26069. https://doi.org/10.1038/srep26069
[28]. Castillo-Azofeifa, D., Fazio, E. N., Nattiv, R., Good, H., Wald, T., Pest, M. A., de, J., Klein, O. D., & Asfaha, S. (2019). Atoh1+ secretory progenitors possess renewal capacity independent of Lgr5 + cells during colonic regeneration. The EMBO Journal, 38. https://doi.org/10.15252/embj.201899984
[29]. Shaikh, N. A., Liu, C., Yin, Y., Baylink, D. J., & Tang, X. (2024). 1,25-Dihydroxyvitamin D Enhances the Regenerative Function of Lgr5+ Intestinal Stem Cells In Vitro and In Vivo. Cells, 13(17), 1465. https://doi.org/10.3390/cells13171465
[30]. Ishikawa, K., Sugimoto, S., Oda, M., Fujii, M., Takahashi, S., Ohta, Y., Takano, A., Ishimaru, K., Matano, M., Yoshida, K., Hanyu, H., Toshimitsu, K., Sawada, K., Shimokawa, M., Saito, M., Kawasaki, K., Ishii, R., Taniguchi, K., Imamura, T., … Sato, T. (2022). Identification of Quiescent LGR5+ Stem Cells in the Human Colon. Gastroenterology, 163(5), 1391-1406.e24. https://doi.org/10.1053/j.gastro.2022.07.081
[31]. Barker, N., Van Es, J. H., Kuipers, J., Kujala, P., Van Den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P. J., & Clevers, H. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007. https://doi.org/10.1038/nature06196
[32]. Karmakar, S., Deng, L., He, X. C., & Li, L. (2020). Intestinal epithelial regeneration: Active versus reserve stem cells and plasticity mechanisms. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318(4), G796–G802. https://doi.org/10.1152/ajpgi.00126.2019
[33]. Cancedda, R., & Mastrogiacomo, M. (2023). Transit Amplifying Cells (TACs): A still not fully understood cell population. Frontiers in Bioengineering and Biotechnology, 11, 1189225. https://doi.org/10.3389/fbioe.2023.1189225
[34]. Suh, H. N., Kim, M. J., Jung, Y.-S., Lien, E. M., Jun, S., & Park, J.-I. (2017). Quiescence Exit of Tert+ Stem Cells by Wnt/β-Catenin Is Indispensable for Intestinal Regeneration. Cell Reports, 21(9), 2571–2584. https://doi.org/10.1016/j.celrep.2017.10.118
[35]. Creff, J., Nowosad, A., Prel, A., Pizzoccaro, A., Aguirrebengoa, M., Duquesnes, N., Callot, C., Jungas, T., Dozier, C., & Besson, A. (2023). p57Kip2 acts as a transcriptional corepressor to regulate intestinal stem cell fate and proliferation. Cell Reports, 42(6), 112659. https://doi.org/10.1016/j.celrep.2023.112659
[36]. Sangiorgi, E., & Capecchi, M. R. (2008). Bmi1 is expressed in vivo in intestinal stem cells. Nature Genetics, 40(7), 915–920. https://doi.org/10.1038/ng.165
[37]. Li, N., Nakauka-Ddamba, A., Tobias, J., Jensen, S. T., & Lengner, C. J. (2016). Mouse Label-Retaining Cells Are Molecularly and Functionally Distinct From Reserve Intestinal Stem Cells. Gastroenterology, 151(2), 298-310.e7. https://doi.org/10.1053/j.gastro.2016.04.049
[38]. Szymczak, I., & Pawliczak, R. (2016). The Active Metabolite of Vitamin D 3 as a Potential Immunomodulator. Scandinavian Journal of Immunology, 83(2), 83–91. https://doi.org/10.1111/sji.12403
[39]. Xu, Y., Baylink, D. J., Cao, H., Xiao, J., Abdalla, M. I., Wasnik, S., & Tang, X. (2021). Inflammation- and Gut-Homing Macrophages, Engineered to De Novo Overexpress Active Vitamin D, Promoted the Regenerative Function of Intestinal Stem Cells. International Journal of Molecular Sciences, 22(17), 9516. https://doi.org/10.3390/ijms22179516
[40]. Li, W., Lin, Y., Luo, Y., Wang, Y., Lu, Y., Li, Y., & Guo, H. (2021). Vitamin D Receptor Protects against Radiation-Induced Intestinal Injury in Mice via Inhibition of Intestinal Crypt Stem/Progenitor Cell Apoptosis. Nutrients, 13(9), 2910. https://doi.org/10.3390/nu13092910
[41]. Sittipo, P., Kim, H. K., Han, J., Lee, M. R., & Lee, Y. K. (2021). Vitamin D3 Suppresses Intestinal Epithelial Stemness via ER Stress Induction in Intestinal Organoids. Stem Cell Research & Therapy, 12. https://doi.org/10.1186/s13287-021-02361-2
[42]. Fernández‐Barral, A., Costales‐Carrera, A., Buira, S. P., Jung, P., Ferrer‐Mayorga, G., Larriba, M. J., Bustamante‐Madrid, P., Domínguez, O., Real, F. X., Guerra‐Pastrián, L., Lafarga, M., García‐Olmo, D., Cantero, R., Del Peso, L., Batlle, E., Rojo, F., Muñoz, A., & Barbáchano, A. (2020). Vitamin D differentially regulates colon stem cells in patient‐derived normal and tumor organoids. The FEBS Journal, 287(1), 53–72. https://doi.org/10.1111/febs.14998
[43]. Wibowo, M., Subandiyah, K., Handono, K., & Poeranto, S. (2021). Role of Vitamin D in Wnt Pathway Activation for Colonic Epithelial Cell Differentiation. Journal of Taibah University Medical Sciences, 16, 575–581. https://doi.org/10.1016/j.jtumed.2021.01.012
[44]. Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L., & Carmeliet, G. (2016). Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiological Reviews, 96(1), 365–408. https://doi.org/10.1152/physrev.00014.2015
[45]. Lee, S. M., Riley, E. M., Meyer, M. B., Benkusky, N. A., Plum, L. A., DeLuca, H. F., & Pike, J. W. (2015). 1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components. Journal of Biological Chemistry, 290(29), 18199–18215. https://doi.org/10.1074/jbc.M115.665794
[46]. Aita, R., Aldea, D., Hassan, S., Hur, J., Pellon-Cardenas, O., Cohen, E., Chen, L., Shroyer, N., Christakos, S., Verzi, M. P., & Fleet, J. C. (2022). Genomic analysis of 1,25-dihydroxyvitamin D3 action in mouse intestine reveals compartment and segment-specific gene regulatory effects. Journal of Biological Chemistry, 298(8), 102213. https://doi.org/10.1016/j.jbc.2022.102213
[47]. Li, S., De La Cruz, J., Hutchens, S., Mukhopadhyay, S., Criss, Z. K., Aita, R., Pellon-Cardenas, O., Hur, J., Soteropoulos, P., Husain, S., Dhawan, P., Verlinden, L., Carmeliet, G., Fleet, J. C., Shroyer, N. F., Verzi, M. P., & Christakos, S. (2021). Analysis of 1,25-Dihydroxyvitamin D3 Genomic Action Reveals Calcium-Regulating and Calcium-Independent Effects in Mouse Intestine and Human Enteroids. Molecular and Cellular Biology, 41(1), e00372-20. https://doi.org/10.1128/MCB.00372-20
[48]. Malagola, E., Vasciaveo, A., Ochiai, Y., Kim, W., Zheng, B., Zanella, L., Wang, A. L. E., Middelhoff, M., Nienhüser, H., Deng, L., Wu, F., Waterbury, Q. T., Belin, B., LaBella, J., Zamechek, L. B., Wong, M. H., Li, L., Guha, C., Cheng, C.-W., … Wang, T. C. (2024). Isthmus progenitor cells contribute to homeostatic cellular turnover and support regeneration following intestinal injury. Cell, 187(12), 3056-3071.e17. https://doi.org/10.1016/j.cell.2024.05.004
[49]. Yousefi, M., Li, N., Nakauka-Ddamba, A., Wang, S., Davidow, K., Schoenberger, J., Yu, Z., Jensen, S. T., Kharas, M. G., & Lengner, C. J. (2016). Msi RNA-binding proteins control reserve intestinal stem cell quiescence. Journal of Cell Biology, 215(3), 401–413. https://doi.org/10.1083/jcb.201604119
[50]. Stewart, A. S., Schaaf, C. R., Luff, J. A., Freund, J. M., Becker, T. C., Tufts, S. R., Robertson, J. B., & Gonzalez, L. M. (2021). HOPX + injury-resistant intestinal stem cells drive epithelial recovery after severe intestinal ischemia. American Journal of Physiology-Gastrointestinal and Liver Physiology, 321(5), G588–G602. https://doi.org/10.1152/ajpgi.00165.2021
[51]. Gustafsson, J. K., & Johansson, M. E. V. (2022). The role of goblet cells and mucus in intestinal homeostasis. Nature Reviews Gastroenterology & Hepatology, 19(12), 785–803. https://doi.org/10.1038/s41575-022-00675-x
[52]. Lueschow, S. R., & McElroy, S. J. (2020). The Paneth Cell: The Curator and Defender of the Immature Small Intestine. Frontiers in Immunology, 11, 587. https://doi.org/10.3389/fimmu.2020.00587
[53]. Facer, P., Bishop, A. E., Lloyd, R. V., Wilson, B. S., Hennessy, R. J., & Polak, J. M. (1985). Chromogranin: A newly recognized marker for endocrine cells of the human gastrointestinal tract. Gastroenterology, 89(6), 1366–1373. https://doi.org/10.1016/0016-5085(85)90657-2
[54]. Goldberg, R. F., Austen, W. G., Zhang, X., Munene, G., Mostafa, G., Biswas, S., McCormack, M., Eberlin, K. R., Nguyen, J. T., Tatlidede, H. S., Warren, H. S., Narisawa, S., Millán, J. L., & Hodin, R. A. (2008). Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proceedings of the National Academy of Sciences, 105(9), 3551–3556. https://doi.org/10.1073/pnas.0712140105
[55]. Chatterjee, I., Zhang, Y., Zhang, J., Lu, R., Xia, Y., & Sun, J. (2021). Overexpression of Vitamin D Receptor in Intestinal Epithelia Protects Against Colitis via Upregulating Tight Junction Protein Claudin 15. Journal of Crohn’s and Colitis, 15(10), 1720–1736. https://doi.org/10.1093/ecco-jcc/jjab044
[56]. Zhang, Y., Wu, S., Lu, R., Zhou, D., Zhou, J., Carmeliet, G., Petrof, E., Claud, E. C., & Sun, J. (2015). Tight junction CLDN2 gene is a direct target of the vitamin D receptor. Scientific Reports, 5(1), 10642. https://doi.org/10.1038/srep10642
[57]. Cottarelli, A., Corada, M., Beznoussenko, G. V., Mironov, A. A., Globisch, M. A., Biswas, S., Huang, H., Dimberg, A., Magnusson, P. U., Agalliu, D., Lampugnani, M. G., & Dejana, E. (2020). Fgfbp1 promotes blood-brain barrier development by regulating collagen IV deposition and maintaining Wnt/β-catenin signaling. Development, dev.185140. https://doi.org/10.1242/dev.185140
[58]. Becnel, L. B., Ochsner, S. A., Darlington, Y. F., McOwiti, A., Kankanamge, W. H., Dehart, M., Naumov, A., & McKenna, N. J. (2017). Discovering relationships between nuclear receptor signaling pathways, genes, and tissues in Transcriptomine. Science Signaling, 10(476), eaah6275. https://doi.org/10.1126/scisignal.aah6275
[59]. Ochsner, S. A., Abraham, D., Martin, K., Ding, W., McOwiti, A., Kankanamge, W., Wang, Z., Andreano, K., Hamilton, R. A., Chen, Y., Hamilton, A., Gantner, M. L., Dehart, M., Qu, S., Hilsenbeck, S. G., Becnel, L. B., Bridges, D., Ma’ayan, A., Huss, J. M., … McKenna, N. J. (2019). The Signaling Pathways Project, an integrated ‘omics knowledgebase for mammalian cellular signaling pathways. Scientific Data, 6(1), 252. https://doi.org/10.1038/s41597-019-0193-4
[60]. Li, J., Witonsky, D., Sprague, E., Alleyne, D., Bielski, M. C., Lawrence, K. M., & Kupfer, S. S. (2021). Genomic and epigenomic active vitamin D responses in human colonic organoids. Physiological Genomics, 53(6), 235–248. https://doi.org/10.1152/physiolgenomics.00150.2020
[61]. Bustamante-Madrid, P., Barbáchano, A., Albandea-Rodríguez, D., Rodríguez-Cobos, J., Rodríguez-Salas, N., Prieto, I., Burgos, A., Martínez De Villarreal, J., Real, F. X., González-Sancho, J. M., Larriba, M. J., Lafarga, M., Muñoz, A., & Fernández-Barral, A. (2024). Vitamin D opposes multilineage cell differentiation induced by Notch inhibition and BMP4 pathway activation in human colon organoids. Cell Death & Disease, 15(4), 301. https://doi.org/10.1038/s41419-024-06680-z
[62]. Mirarchi, A., Albi, E., Beccari, T., & Arcuri, C. (2023). Microglia and Brain Disorders: The Role of Vitamin D and Its Receptor. International Journal of Molecular Sciences, 24(15), 11892. https://doi.org/10.3390/ijms241511892
[63]. Domingo-Muelas, A., Duart-Abadia, P., Morante-Redolat, J. M., Jordán-Pla, A., Belenguer, G., Fabra-Beser, J., Paniagua-Herranz, L., Pérez-Villalba, A., Álvarez-Varela, A., Barriga, F. M., Gil-Sanz, C., Ortega, F., Batlle, E., & Fariñas, I. (2023). Post-transcriptional control of a stemness signature by RNA-binding protein MEX3A regulates murine adult neurogenesis. Nature Communications, 14(1), 373. https://doi.org/10.1038/s41467-023-36054-6
[64]. Battelli, C., Nikopoulos, G. N., Mitchell, J. G., & Verdi, J. M. (2006). The RNA-binding protein Musashi-1 regulates neural development through the translational repression of p21WAF-1. Molecular and Cellular Neuroscience, 31(1), 85–96. https://doi.org/10.1016/j.mcn.2005.09.003
[65]. Imai, T., Tokunaga, A., Yoshida, T., Hashimoto, M., Mikoshiba, K., Weinmaster, G., Nakafuku, M., & Okano, H. (2001). The Neural RNA-Binding Protein Musashi1 Translationally Regulates Mammalian numb Gene Expression by Interacting with Its mRNA. Molecular and Cellular Biology, 21(12), 3888–3900. https://doi.org/10.1128/MCB.21.12.3888-3900.2001
[66]. Orzechowska, E. J., Katano, T., Bialkowska, A. B., & Yang, V. W. (2020). Interplay among p21Waf1/Cip1, MUSASHI-1 and Krüppel-like factor 4 in activation of Bmi1-CreER reserve intestinal stem cells after gamma radiation-induced injury. Scientific Reports, 10(1), 18300. https://doi.org/10.1038/s41598-020-75171-w
[67]. Yeapuri, P., Machhi, J., Lu, Y., Abdelmoaty, M. M., Kadry, R., Patel, M., Bhattarai, S., Lu, E., Namminga, K. L., Olson, K. E., Foster, E. G., Mosley, R. L., & Gendelman, H. E. (2023). Amyloid-β specific regulatory T cells attenuate Alzheimer’s disease pathobiology in APP/PS1 mice. Molecular Neurodegeneration, 18(1), 97. https://doi.org/10.1186/s13024-023-00692-7
[68]. Żmijewski, M. A. (2022). Nongenomic Activities of Vitamin D. Nutrients, 14(23), 5104. https://doi.org/10.3390/nu14235104
About this article
Citation (APA)
Chen, J. (2025). The role of vitamin D on reserved intestinal stem cells. WUJUR, 2(1), 20-23.
A DOI link will soon be supplied for this article and added to the above citation.
Author Information
Jun Ru, Chen. Washington University in St. Louis.
Corresponding Author. Send correspondence to c.junru@wustl.edu.
Additional Information and Declarations
There is no additional information or declarations provided by the author(s).
Peer Review
WUJUR thanks the anonymous Peer Reviewers who contributed to the review of this work.
Rights and Permissions
Individual articles © 2025 by their respective authors. Illustrations and images remain the property of their respective authors or rights holders and are reproduced here with permission or under fair use.
The author(s) may grant certain license permissions to the public.
Copyright © 2025. Washington University Journal of Undergraduate Research. All rights reserved for compilation, design, and editorial content.


WUJUR comments may be moderated.