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Magnetic resonance imaging (MRI) is a critical method in 
the non-invasive detection and diagnosis of degenerative 

diseases in the brain. The precision of a diagnosis using MRI scans 
is highly dependent on their spatial resolution, with higher spatial 
resolution providing a greater level of detail in the final image. How-
ever, achieving this higher resolution requires prolonged scan times, 
which is sometimes not an option in time-sensitive scenarios.

Scan times can be reduced by collecting less data in k-space, 
which is the frequency domain where raw MRI data is collected 
and stored [1]. However, this reduction in data lowers the spatial 
resolution and can lead to a low-resolution final image containing 
artifacts such as blurring. 

This work attempts to address these issues by applying ma-
chine learning to enhance and super-resolve the MRI images after 
their acquisition. Specifically, we will focus on super-resolving 
Fluid Attenuated Inversion Recovery (FLAIR) MRI scans using 
the U-Net architecture. 

 Originally developed for biomedical image segmentation, the 
process of identifying and labeling structures within medical im-
ages, U-Net's encoder–decoder structure with skip connections 
makes it well suited for reconstructing high-resolution images 
from low-resolution inputs (Figure 1). This capability makes it an 
ideal choice for restoring fine structural details lost during acceler-
ated scanning [3].

The FLAIR MRI dataset used in this study consists of volu-
metric scans, which are each stored as a three-dimensional array of 
voxels (three-dimension pixels). Because the data was collected 
using an accelerated protocol, two out of every three slices are 
missing, meaning the images retain only one-third of the original 
spatial information.

Methods
To reconstruct the missing information in super-resolution, a 

model needs to be trained using a simulated data set created from 
MRI scans at the desired resolution. We experimented with two 

downsampling methods: one in image space and one in k-space.
The image space downsampling is performed by removing 

two out of every three slices using linear interpolation on the orig-
inal high-resolution MRI scan to match the dimensions of the real 
data. Then, to feed the image into the model, every voxel was 
tripled, matching the dimensions  of the ground truth image. Since 
the real data was already missing two out of every three slices, 
feeding it into the model only required each of the voxels to be 
tripled along the axis with missing data.

The k-space downsampling for the simulated data set in-
volved taking the high-resolution image and converting the image 
to k-space using a Fourier Transform [1]. By removing informa-
tion from the domain where raw MRI data is initially collected, we 
hope to create a more accurate simulated downsampling process. 
Then, to match the amount of missing information from the real 
data, the first and last third of the k-space images were masked out. 
Afterward, an inverse Fourier Transform was applied for the final 
downsampled image. To replicate this process on the real data, the 
k-space image in the frequency domain was padded on the left and 
right sides with rectangles of equal dimensions to the original    
image to triple the width. After an inverse Fourier Transform, an 
image that matches the dimensions of the simulated data set was 
obtained. This dimension matching step is critical in getting the 
expected behavior from the super-resolution model that was 
trained on the simulated data set. 

Since MRI scans include 3D data, two separate models were 
trained for two different views of the volume: coronal and sagittal, 
the terms used to describe different planes of the brain. This ap-
proach allowed the model to learn patterns specific to each view, 
improving reconstruction accuracy.

We were also able to take advantage of the data’s 3D nature 
by implementing a modified version of the U-Net model. This 
worked by allowing the initial downsampling block to accept mul-
tiple input channels, each of which was fed with adjacent slices of 
the MRI. Then, the output of the final upblock was validated 
against the ground truth of the middle of the input slices. To ensure 
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we found the correct balance between giving the model critical ex-
tra information and distracting it with irrelevant data, versions of 
the model accepting one, three, and five input slices were at-
tempted.

Because our model was trained on multiple MRI slices, voxel 
intensities were normalized to a range of 0–1. This normalization 
helps the model focus on structural details rather than variations in 
intensity.

To evaluate the model’s performance, we calculated two com-
mon image quality metrics: structural similarity index (SSIM) and 
peak signal-to-noise ratio (PSNR). SSIM measures the perceptual 
similarity between two images, while PSNR measures how much 
signal there is compared to noise. For both SSIM and PSNR, a 
higher value indicates better image quality. 

Both metrics were evaluated for input (downsampled and 
ground truth) and output (predicted and ground truth) and aver-
aged across the validation dataset.

Results
When applied to their respective downsampling methods, the 

k-space model consistently outperformed the image-space model 
in terms of SSIM and PSNR (Table 1). Visual inspection shows 
that the K-space model preserves finer anatomical details than the 
image space model (Fig. 3). Thin structures are notably degraded 
or lost in the image-space model, likely due to the greater informa-

tion loss introduced by its downsampling method.
We also evaluated configurations of 1, 3, or 5 adjacent MRI 

slices in addition to the downsampling comparison. Among the 
tested slice configurations, the 3-slice model achieved the highest 
SSIM and PSNR  scores, outperforming both the 1-slice and 5-
slice models. These findings suggest that the 3-slice configuration 
strikes a balance between providing sufficient contextual informa-
tion and avoiding overfitting. The 3-slice configuration likely ben-
efits from incorporating sufficient spatial context without over-
whelming the model, which might occur with the 5-slice variant. 
Conversely, the 1-slice model likely lacks adequate contextual in-
formation for robust reconstruction.

The models show promising results with both simulated and 
real-world data. Specifically, the k-space model shows qualita-
tively better performance when applied to real MRI data. This per-
formance disparity suggests that the k-space approach generalizes 
more effectively to natural noise and variations found in real-
world scenarios, whereas the image space super-resolution process 
appears more sensitive to these inconsistencies. However, the dis-
tribution of the super-resolved data still closely resembles that of 
the low-resolution data instead of the high-resolution data we are 
attempting to match (Fig. 6). Additionally, the distribution of the 
k-space downsampled data more closely matches the high-resolu-
tion distribution, revealing an imperfect simulation of the real 
data.

Fig. 1 | Diagram of the U-Net architecture used in the model.

Fig. 2 | An example of the k-space downsampling performed for the simulated dataset.
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Fig. 3 | Two examples of the k-space model with three input slices applied to the real data set. As can be seen in the highlighted areas, the model is qualitatively able to 
sharpen the images substantially.

Fig. 4 | An example of the output of a model trained with three input channels and data downsampled with the k-space method. 5 
518243 
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Downsampling 

PSNR 

Input 0.8367 29.0960 0.9420 35.1550 

Image Space 
Model 

0.9168 33.5757 0.8856 31.3039 

K-space One 
Slice Model 

0.8056 27.0096 0.9580 37.0127 

K-space 
Three Slice 
Model 

0.8277 28.1409 0.9640 37.2131 

K-space Five 
Slice Model 

0.8213 28.0856 0.9633 37.1335 

Table 1: Comparison of SSIM and PSNR for all variations of models trained as applied to both 

image space downsampling done with linear interpolation and k-space downsampling. Input 

metrics quantify the difference between the downsampled data and the original high-resolution 

data. For all metrics, a higher value is better. 

 

Figure 3: Two examples of the k-space model with three input slices applied to the real data set. 
As can be seen in the highlighted areas, the model is qualitatively able to sharpen the images 
substantially. 

 

Table 1 | Comparison of SSIM and PSNR for all variations of models trained as applied to both image space downsampling done with linear interpolation and k-space 
downsampling. Input metrics quantify the difference between the downsampled data and the original high-resolution data. For all metrics, a higher value is better.
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Fig. 5 | Comparison between the performance of the K-space and Image-Space models. The K-space model (top) performs much better and can create smooth lines like the ground 
truth. Meanwhile, the Image-Space model, as featured on the bottom, still carries some artifacts from the downsampling method.

Conclusions
This project demonstrates the use of the U-Net model archi-

tecture, a convolutional neural network (CNN) designed for fast 
and precise image segmentation, to restore image data lost from 
accelerated MRI scanning. By comparing downsampling methods 
performed in image space and k-space, we found that k-space 
downsampling consistently outperforms image space downsam-
pling in both quantitative metrics (SSIM and PSNR) and qualita-
tive reconstruction of fine anatomical details. Furthermore, exper-
iments with different slice configurations revealed that a 3-slice 
input strikes an optimal balance between spatial context and model 
complexity, outperforming 1-slice and 5-slice configurations.

While we were able to achieve relatively high quantitative 
metrics, the model could be improved by better utilizing the k-
space data through deep unfolding, which could be used for addi-
tional validation during training [4]. Another limitation lies in the 
reliance on simulated downsampling, which may not fully reflect 
real-world MRI conditions. Analysis of the super-resolved data re-
veals that the distribution still matches the low-resolution data, 
rather than the desired high-resolution data. While qualitative 
analysis is still possible with our super-resolved data, this distribu-
tion issue could cause problems for certain quantitative pipelines 
where data fidelity is crucial. Future experiments should be con-
ducted to refine the simulated downsampling process in order to 
improve our results.
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