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Accelerated MRI scanning often results in lower resolution, introducing image distortions and loss of critical details. This
study explores the application of machine learning to super-resolve Fluid-Attenuated Inversion Recovery Magnetic
Resonance Imaging (FLAIR MRI) scans and restore those missing details. Specifically, we test models based on the U-Net
architecture trained with two down sampling methods: removing two out of every 3 slices and linearly interpolating in
image space and cropping the top and bottom thirds slices in k-space, the raw frequency data. Our experiments
demonstrate that k-space down sampling consistently outperforms image-space methods in both Structural Similarity
Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) metrics, while also achieving superior reconstruction of fine details.
Additionally, a multi-slice input approach using three adjacent slices was shown to further improve results by providing
additional spatial context. This work allows for the restoration of MRI scans collected in an accelerated manner,
significantly enhancing image quality and detail for improved diagnostic confidence.

agnetic resonance imaging (MRI) is a critical method in

the non-invasive detection and diagnosis of degenerative
diseases in the brain. The precision of a diagnosis using MRI scans
is highly dependent on their spatial resolution, with higher spatial
resolution providing a greater level of detail in the final image. How-
ever, achieving this higher resolution requires prolonged scan times,
which is sometimes not an option in time-sensitive scenarios.

Scan times can be reduced by collecting less data in k-space,
which is the frequency domain where raw MRI data is collected
and stored [1]. However, this reduction in data lowers the spatial
resolution and can lead to a low-resolution final image containing
artifacts such as blurring.

This work attempts to address these issues by applying ma-
chine learning to enhance and super-resolve the MRI images after
their acquisition. Specifically, we will focus on super-resolving
Fluid Attenuated Inversion Recovery (FLAIR) MRI scans using
the U-Net architecture.

Originally developed for biomedical image segmentation, the
process of identifying and labeling structures within medical im-
ages, U-Net's encoder—decoder structure with skip connections
makes it well suited for reconstructing high-resolution images
from low-resolution inputs (Figure 1). This capability makes it an
ideal choice for restoring fine structural details lost during acceler-
ated scanning [3].

The FLAIR MRI dataset used in this study consists of volu-
metric scans, which are each stored as a three-dimensional array of
voxels (three-dimension pixels). Because the data was collected
using an accelerated protocol, two out of every three slices are
missing, meaning the images retain only one-third of the original
spatial information.

Methods

To reconstruct the missing information in super-resolution, a
model needs to be trained using a simulated data set created from
MRI scans at the desired resolution. We experimented with two

downsampling methods: one in image space and one in k-space.

The image space downsampling is performed by removing
two out of every three slices using linear interpolation on the orig-
inal high-resolution MRI scan to match the dimensions of the real
data. Then, to feed the image into the model, every voxel was
tripled, matching the dimensions of the ground truth image. Since
the real data was already missing two out of every three slices,
feeding it into the model only required each of the voxels to be
tripled along the axis with missing data.

The k-space downsampling for the simulated data set in-
volved taking the high-resolution image and converting the image
to k-space using a Fourier Transform [1]. By removing informa-
tion from the domain where raw MRI data is initially collected, we
hope to create a more accurate simulated downsampling process.
Then, to match the amount of missing information from the real
data, the first and last third of the k-space images were masked out.
Afterward, an inverse Fourier Transform was applied for the final
downsampled image. To replicate this process on the real data, the
k-space image in the frequency domain was padded on the left and
right sides with rectangles of equal dimensions to the original
image to triple the width. After an inverse Fourier Transform, an
image that matches the dimensions of the simulated data set was
obtained. This dimension matching step is critical in getting the
expected behavior from the super-resolution model that was
trained on the simulated data set.

Since MRI scans include 3D data, two separate models were
trained for two different views of the volume: coronal and sagittal,
the terms used to describe different planes of the brain. This ap-
proach allowed the model to learn patterns specific to each view,
improving reconstruction accuracy.

We were also able to take advantage of the data’s 3D nature
by implementing a modified version of the U-Net model. This
worked by allowing the initial downsampling block to accept mul-
tiple input channels, each of which was fed with adjacent slices of
the MRI. Then, the output of the final upblock was validated
against the ground truth of the middle of the input slices. To ensure
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Fig. 1| Diagram of the U-Net architecture used in the model.
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we found the correct balance between giving the model critical ex-
tra information and distracting it with irrelevant data, versions of
the model accepting one, three, and five input slices were at-
tempted.

Because our model was trained on multiple MRI slices, voxel
intensities were normalized to a range of 0—1. This normalization
helps the model focus on structural details rather than variations in
intensity.

To evaluate the model’s performance, we calculated two com-
mon image quality metrics: structural similarity index (SSIM) and
peak signal-to-noise ratio (PSNR). SSIM measures the perceptual
similarity between two images, while PSNR measures how much
signal there is compared to noise. For both SSIM and PSNR, a
higher value indicates better image quality.

Both metrics were evaluated for input (downsampled and
ground truth) and output (predicted and ground truth) and aver-
aged across the validation dataset.

Results

When applied to their respective downsampling methods, the
k-space model consistently outperformed the image-space model
in terms of SSIM and PSNR (Table 1). Visual inspection shows
that the K-space model preserves finer anatomical details than the
image space model (Fig. 3). Thin structures are notably degraded
or lost in the image-space model, likely due to the greater informa-

Fig. 2| An example of the k-space downsampling performed for the simulated dataset.

tion loss introduced by its downsampling method.

We also evaluated configurations of 1, 3, or 5 adjacent MRI
slices in addition to the downsampling comparison. Among the
tested slice configurations, the 3-slice model achieved the highest
SSIM and PSNR scores, outperforming both the 1-slice and 5-
slice models. These findings suggest that the 3-slice configuration
strikes a balance between providing sufficient contextual informa-
tion and avoiding overfitting. The 3-slice configuration likely ben-
efits from incorporating sufficient spatial context without over-
whelming the model, which might occur with the 5-slice variant.
Conversely, the 1-slice model likely lacks adequate contextual in-
formation for robust reconstruction.

The models show promising results with both simulated and
real-world data. Specifically, the k-space model shows qualita-
tively better performance when applied to real MRI data. This per-
formance disparity suggests that the k-space approach generalizes
more effectively to natural noise and variations found in real-
world scenarios, whereas the image space super-resolution process
appears more sensitive to these inconsistencies. However, the dis-
tribution of the super-resolved data still closely resembles that of
the low-resolution data instead of the high-resolution data we are
attempting to match (Fig. 6). Additionally, the distribution of the
k-space downsampled data more closely matches the high-resolu-
tion distribution, revealing an imperfect simulation of the real
data.
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Fig. 3| Two examples of the k-space model with three input slices applied to the real data set. As can be seen in the highlighted areas, the model is qualitatively able to
sharpen the images substantially.
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Input SSIM: 0.9162 Output SSM: 0.9497
Input PSNR: 31.38 Output PSNR: 33.46

Fig. 4| An example of the output of a model trained with three input channels and data downsampled with the k-space method.

Image Space Image Space K-space K-space
Downsampling | Downsampling Downsampling Downsampling
SSIM PSNR SSIM PSNR
Input 0.8367 29.0960 0.9420 35.1550
Image Space 0.9168 33.5757 0.8856 31.3039
Model
K-space One 0.8056 27.0096 0.9580 37.0127
Slice Model
K-space 0.8277 28.1409 0.9640 37.2131
Three Slice
Model
K-space Five 0.8213 28.0856 0.9633 37.1335
Slice Model

Table 1| Comparison of SSIM and PSNR for all variations of models trained as applied to both image space downsampling done with linear interpolation and k-space
downsampling. Input metrics quantify the difference between the downsampled data and the original high-resolution data. For all metrics, a higher value is better.
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Fig. 5| Comparison between the performance of the K-space and Image-Space models. The K-space model (top) performs much better and can create smooth lines like the ground
truth. Meanwhile, the Image-Space model, as featured on the bottom, still carries some artifacts from the downsampling method.

Conclusions

This project demonstrates the use of the U-Net model archi-
tecture, a convolutional neural network (CNN) designed for fast
and precise image segmentation, to restore image data lost from
accelerated MRI scanning. By comparing downsampling methods
performed in image space and k-space, we found that k-space
downsampling consistently outperforms image space downsam-
pling in both quantitative metrics (SSIM and PSNR) and qualita-
tive reconstruction of fine anatomical details. Furthermore, exper-
iments with different slice configurations revealed that a 3-slice
input strikes an optimal balance between spatial context and model
complexity, outperforming 1-slice and 5-slice configurations.

While we were able to achieve relatively high quantitative
metrics, the model could be improved by better utilizing the k-
space data through deep unfolding, which could be used for addi-
tional validation during training [4]. Another limitation lies in the
reliance on simulated downsampling, which may not fully reflect
real-world MRI conditions. Analysis of the super-resolved data re-
veals that the distribution still matches the low-resolution data,
rather than the desired high-resolution data. While qualitative
analysis is still possible with our super-resolved data, this distribu-
tion issue could cause problems for certain quantitative pipelines
where data fidelity is crucial. Future experiments should be con-
ducted to refine the simulated downsampling process in order to
improve our results.
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